Sciweavers

AAI
2007

Incremental Extraction of Association Rules in Applicative Domains

13 years 10 months ago
Incremental Extraction of Association Rules in Applicative Domains
In recent years, the KDD process has been advocated to be an iterative and interactive process. It is seldom the case that a user is able to answer immediately with a single query all his questions on data. On the contrary, the workflow of the typical user consists in several steps, in which he/she iteratively refines the extracted knowledge by inspecting previous results and posing new queries. Given this view of the KDD process, in order to reduce the computational effort, it becomes crucial to have KDD systems that are able to exploit past results. This is expecially true in environments in which the system knowledge base is the result of many discoveries on data made separately by the collaborative effort of different users. In this paper, we consider the problem of mining frequent association rules from database relations. We first model a general, constraint-based, mining language for this task. Then, we propose an algorithm that answers such queries re-using past results....
Arianna Gallo, Roberto Esposito, Rosa Meo, Marco B
Added 08 Dec 2010
Updated 08 Dec 2010
Type Journal
Year 2007
Where AAI
Authors Arianna Gallo, Roberto Esposito, Rosa Meo, Marco Botta
Comments (0)