Integral Invariants for Shape Matching

13 years 6 months ago
Integral Invariants for Shape Matching
For shapes represented as closed planar contours, we introduce a class of functionals which are invariant with respect to the Euclidean group and which are obtained by performing integral operations. While such integral invariants enjoy some of the desirable properties of their differential counterparts, such as locality of computation (which allows matching under occlusions) and uniqueness of representation (asymptotically), they do not exhibit the noise sensitivity associated with differential quantities and, therefore, do not require presmoothing of the input shape. Our formulation allows the analysis of shapes at multiple scales. Based on integral invariants, we define a notion of distance between shapes. The proposed distance measure can be computed efficiently and allows warping the shape boundaries onto each other; its computation results in optimal point correspondence as an intermediate step. Numerical results on shape matching demonstrate that this framework can match shapes ...
Siddharth Manay, Daniel Cremers, Byung-Woo Hong, A
Added 14 Dec 2010
Updated 14 Dec 2010
Type Journal
Year 2006
Where PAMI
Authors Siddharth Manay, Daniel Cremers, Byung-Woo Hong, Anthony J. Yezzi, Stefano Soatto
Comments (0)