Sciweavers

ICRA
2006
IEEE

Integration of Dependent Bayesian Filters for Robust Tracking

14 years 4 months ago
Integration of Dependent Bayesian Filters for Robust Tracking
— Robotics applications based on computer vision algorithms are highly constrained to indoor environments where conditions may be controlled. The development of robust visual algorithms is necessary for improving the capabilities of many autonomous systems in outdoor and dynamic environments. In particular, this paper proposes a tracking algorithm robust to several artifacts which may be found in real world applications, such as lighting changes, cluttered backgrounds and unexpected target movements. In order to deal with these difficulties the proposed tracking methodology integrates several Bayesian filters. Each filter estimates the state of a particular object feature which is conditionally dependent on another feature estimated by a distinct filter. This dependence provides improved representations of the target, allowing to segment it out from the background of the image. We describe the updating procedure of the Bayesian filters by a ‘hypotheses generation and correctio...
Francesc Moreno-Noguer, Alberto Sanfeliu, Dimitris
Added 11 Jun 2010
Updated 11 Jun 2010
Type Conference
Year 2006
Where ICRA
Authors Francesc Moreno-Noguer, Alberto Sanfeliu, Dimitris Samaras
Comments (0)