Kinetic stable Delaunay graphs

13 years 11 months ago
Kinetic stable Delaunay graphs
The best known upper bound on the number of topological changes in the Delaunay triangulation of a set of moving points in R2 is (nearly) cubic, even if each point is moving with a fixed velocity. We introduce the notion of a stable Delaunay graph (SDG in short), a dynamic subgraph of the Delaunay triangulation, that is less volatile in the sense that it undergoes fewer topological changes and yet retains many useful properties of the full Delaunay triangulation. SDG is defined in terms of a parameter α > 0, and consists of Delaunay edges pq for which the (equal) angles at which p and q see the corresponding Voronoi edge epq are at least α. We prove several interesting properties of SDG and describe two kinetic data structures for maintaining it. Both structures use O∗ (n) storage. They process O∗ (n2 ) events during the motion, each in O∗ (1) time, provided that the points of P move along algebraic trajectories of bounded degree; the O∗ (·) notation hides multiplicati...
Pankaj K. Agarwal, Jie Gao, Leonidas J. Guibas, Ha
Added 10 Jul 2010
Updated 10 Jul 2010
Type Conference
Year 2010
Authors Pankaj K. Agarwal, Jie Gao, Leonidas J. Guibas, Haim Kaplan, Vladlen Koltun, Natan Rubin, Micha Sharir
Comments (0)