Using microarray technology for genetic analysis in biological experiments requires computationally intensive tools to interpret results. The main objective here is to develop a “meta-analysis” tool that enables researchers to “spray” microarray data over a network of relevant gene regulation relationships, extracted from a database of published gene regulatory pathway models. The consistency of the data from a microarray experiment is evaluated to determine if it agrees or contradicts with previous findings. The database is limited to “activate” and “inhibit” gene regulatory relationships at this point and a heuristic graph based approach is developed for consistency checking. Predictions are made for the regulation of genes that were not a part of the microarray experiment, but are related to the experiment through regulatory relationships. This meta-analysis will not only highlight consistent findings but also pinpoint genes that were missed in earlier experiments a...