Sciweavers

COMPUTE
2010
ACM

Mining periodic-frequent patterns with maximum items' support constraints

14 years 2 months ago
Mining periodic-frequent patterns with maximum items' support constraints
The single minimum support (minsup) based frequent pattern mining approaches like Apriori and FP-growth suffer from“rare item problem”while extracting frequent patterns. That is, at high minsup, frequent patterns consisting of rare items will be missed, and at low minsup, number of frequent patterns explode. In the literature, efforts have been made to extract rare frequent patterns under “multiple minimum support framework”. In this framework, “rare frequent patterns” can be extracted by specifying minsup of the pattern using two models: minimum constraint model and maximum constraint model. In the literature, an approach has been proposed to extract only those frequent patterns which occur periodically. The basic model of periodic-frequent patterns is based on single minsup constraint. It was observed that the periodic-frequent pattern mining approach also suffers from the“rare item problem”. An effort has been made to extract rare periodic-frequent patterns usin...
R. Uday Kiran, P. Krishna Reddy
Added 02 Aug 2010
Updated 02 Aug 2010
Type Conference
Year 2010
Where COMPUTE
Authors R. Uday Kiran, P. Krishna Reddy
Comments (0)