Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

BMCBI

2006

2006

Background: Serial Analysis of Gene Expressions (SAGE) produces gene expression measurements on a discrete scale, due to the finite number of molecules in the sample. This means that part of the variance in SAGE data should be understood as the sampling error in a binomial or Poisson distribution, whereas other variance sources, in particular biological variance, should be modeled using a continuous distribution function, i.e. a prior on the intensity of the Poisson distribution. One challenge is that such a model predicts a large number of genes with zero counts, which cannot be observed. Results: We present a hierarchical Poisson model with a gamma prior and three different algorithms for estimating the parameters in the model. It turns out that the rate parameter in the gamma distribution can be estimated on the basis of a single SAGE library, whereas the estimate of the shape parameter becomes unstable. This means that the number of zero counts cannot be estimated reliably. When a...

Related Content

Added |
10 Dec 2010 |

Updated |
10 Dec 2010 |

Type |
Journal |

Year |
2006 |

Where |
BMCBI |

Authors |
Helene H. Thygesen, Aeilko H. Zwinderman |

Comments (0)