Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

NETWORKS

2006

2006

We are given a directed network G = (V, A, u) with vertex set V , arc set A, a source vertex s V , a destination vertex t V , a finite capacity vector u = {uij}ijA, and a positive integer m Z+. The multiroute maximum flow problem (m-MFP) generalizes the ordinary maximum flow problem by seeking a maximum flow from s to t subject to not only the regular flow conservation constraints at the vertices (except s and t) and the flow capacity constraints at the arcs, but also the extra constraints that any flow must be routed along m arc-disjoint s-t paths. In this paper, we devise two new combinatorial algorithms for m-MFP. One is based on Newton's method and another is based on augmenting-path technique. We also show how the Newton-based algorithm unifies two existing algorithms, and how the augmenting-path algorithm is strongly polynomial for case m = 2. Keywords Newton's method, augmenting-path, multiroute flow, parametric flow

Added |
14 Dec 2010 |

Updated |
14 Dec 2010 |

Type |
Journal |

Year |
2006 |

Where |
NETWORKS |

Authors |
Donglei Du, R. Chandrasekaran |

Comments (0)