Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

29

Voted
NIPS

2007

2007

It is becoming increasingly evident that organisms acting in uncertain dynamical environments often employ exact or approximate Bayesian statistical calculations in order to continuously estimate the environmental state, integrate information from multiple sensory modalities, form predictions and choose actions. What is less clear is how these putative computations are implemented by cortical neural networks. An additional level of complexity is introduced because these networks observe the world through spike trains received from primary sensory afferents, rather than directly. A recent line of research has described mechanisms by which such computations can be implemented using a network of neurons whose activity directly represents a probability distribution across the possible “world states”. Much of this work, however, uses various approximations, which severely restrict the domain of applicability of these implementations. Here we make use of rigorous mathematical results fr...

Related Content

Added |
30 Oct 2010 |

Updated |
30 Oct 2010 |

Type |
Conference |

Year |
2007 |

Where |
NIPS |

Authors |
Omer Bobrowski, Ron Meir, Shy Shoham, Yonina C. Eldar |

Comments (0)