Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

ICTAI

2008

IEEE

2008

IEEE

—The dynamics of many systems are described by ordinary differential equations (ODE). Solving ODEs with standard methods (i.e. numerical integration) needs a high amount of computing time but only a small amount of storage memory. For some applications, e.g. short time weather forecast or real time robot control, long computation times are prohibitive. Is there a method which uses less computing time (but has drawbacks in other aspects, e.g. memory), so that the computation of ODEs gets faster? We will try to discuss this question for the assumption that the alternative computation method is a neural network which was trained on ODE dynamics and compare both methods using the same approximation error. This comparison is done with two different errors. First, we use the standard error that measures the difference between the approximation and the solution of the ODE which is hard to characterize. But in many cases, as for physics engines used in computer games, the shape of the approx...

Related Content

Added |
31 May 2010 |

Updated |
31 May 2010 |

Type |
Conference |

Year |
2008 |

Where |
ICTAI |

Authors |
Josef Fojdl, Rüdiger W. Brause |

Comments (0)