Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

STACS

2010

Springer

2010

Springer

Abstract. The problem of Subgraph Isomorphism is deﬁned as follows: Given a pattern H and a host graph G on n vertices, does G contain a subgraph that is isomorphic to H? Eppstein [SODA 95, J’GAA 99] gives the ﬁrst linear time algorithm for subgraph isomorphism for a ﬁxed-size pattern, say of order k, and arbitrary planar host graph, improving upon the O(n √ k )-time algorithm when using the “Color-coding” technique of Alon et al [J’ACM 95]. Eppstein’s algorithm runs in time kO(k) n, that is, the dependency on k is superexponential. We improve the running time to 2O(k) n, that is, single exponential in k while keeping the term in n linear. Next to deciding subgraph isomorphism, we can construct a solution and count all solutions in the same asymptotic running time. We may enumerate ω subgraphs with an additive term O(ωk) in the running time of our algorithm. We introduce the technique of “embedded dynamic programming” on a suitably structured graph decomposition...

Related Content

Added |
14 May 2010 |

Updated |
14 May 2010 |

Type |
Conference |

Year |
2010 |

Where |
STACS |

Authors |
Frederic Dorn |

Comments (0)