Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

EJC

2006

2006

It is known that a graded lattice of rank n is supersolvable if and only if it has an EL-labelling where the labels along any maximal chain are exactly the numbers 1, 2, . . . , n without repetition. These labellings are called Sn EL-labellings, and having such a labelling is also equivalent to possessing a maximal chain of left modular elements. In the case of an ungraded lattice, there is a natural extension of Sn EL-labellings, called interpolating labellings. We show that admitting an interpolating labelling is again equivalent to possessing a maximal chain of left modular elements. Furthermore, we work in the setting of an arbitrary bounded poset as all the above results generalize to this case. We conclude by applying our results to show that the lattice of non-straddling partitions, which is not graded in general, has a maximal chain of left modular elements. Version of 12 July 2004

Added |
12 Dec 2010 |

Updated |
12 Dec 2010 |

Type |
Journal |

Year |
2006 |

Where |
EJC |

Authors |
Peter McNamara, Hugh Thomas |

Comments (0)