Sciweavers

38
Voted
WISTP
2010
Springer

A Probabilistic Diffusion Scheme for Anomaly Detection on Smartphones

14 years 5 months ago
A Probabilistic Diffusion Scheme for Anomaly Detection on Smartphones
Widespread use and general purpose computing capabilities of next generation smartphones make them the next big targets of malicious software (malware) and security attacks. Given the battery, computing power, and bandwidth limitations inherent to such mobile devices, detection of malware on them is a research challenge that requires a different approach than the ones used for desktop/laptop computing. We present a novel probabilistic diffusion scheme for detecting anomalies possibly indicating malware which is based on device usage patterns. The relationship between samples of normal behavior and their features are modeled through a bipartite graph which constitutes the basis for the stochastic diffusion process. Subsequently, we establish an indirect similarity measure among sample points. The diffusion kernel derived over the feature space together with the Kullback-Leibler divergence over the sample space provide an anomaly detection algorithm. We demonstrate its applicability in t...
Tansu Alpcan, Christian Bauckhage, Aubrey-Derrick
Added 14 May 2010
Updated 14 May 2010
Type Conference
Year 2010
Where WISTP
Authors Tansu Alpcan, Christian Bauckhage, Aubrey-Derrick Schmidt
Comments (0)