Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

22

Voted
IJCNN

2008

IEEE

2008

IEEE

— Much recent research activity has focused on the theory and application of quantum calculus. This branch of mathematics continues to find new and useful applications and there is much promise left for investigation into this field. We present a formulation of dynamic programming grounded in the quantum calculus. Our results include the standard dynamic programming induction algorithm which can be interpreted as the Hamilton-Jacobi-Bellman equation in the quantum calculus. Furthermore, we show that approximate dynamic programming in quantum calculus is tenable by laying the groundwork for the backpropagation algorithm common in neural network training. In particular, we prove that the chain rule for ordered derivatives, fundamental to backpropagation, is valid in quantum calculus. In doing this we have connected two major fields of research.

Related Content

Added |
31 May 2010 |

Updated |
31 May 2010 |

Type |
Conference |

Year |
2008 |

Where |
IJCNN |

Authors |
John Seiffertt, Donald C. Wunsch |

Comments (0)