Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

RECOMB

2005

Springer

2005

Springer

Abstract. One of the simplest evolutionary models has molecular sequences evolving from a common ancestor down a bifurcating phylogenetic tree, experiencing point-mutations along the way. However, empirical analyses of different genes indicate that the evolution of genomes is often more complex than can be represented by such a model. Thus, the following problem is of significant interest in molecular evolution: Given a set of molecular sequences, compute a reticulate network that explains the data using a minimal number of reticulations. This paper makes four contributions toward solving this problem. First, it shows that there exists a one-to-one correspondence between the tangles in a reticulate network, the connected components of the associated incompatibility graph and the netted components of the associated splits graph. Second, it provides an algorithm that computes a most parsimonious reticulate network in polynomial time, if the reticulations contained in any tangle have a ce...

Related Content

Added |
03 Dec 2009 |

Updated |
03 Dec 2009 |

Type |
Conference |

Year |
2005 |

Where |
RECOMB |

Authors |
Daniel H. Huson, Tobias H. Klöpper, Pete J. Lockhart, Mike A. Steel |

Comments (0)