Sciweavers

ICDAR
2009
IEEE

Robust Recognition of Documents by Fusing Results of Word Clusters

14 years 6 months ago
Robust Recognition of Documents by Fusing Results of Word Clusters
The word error rate of any optical character recognition system (OCR) is usually substantially below its component or character error rate. This is especially true of Indic languages in which a word consists of many components. Current OCRs recognize each character or word separately and do not take advantage of document level constraints. We propose a document level OCR which incorporates information from the entire document to reduce word error rates. Word images are first clustered using a locality sensitive hashing technique. Individual words are then recognized using a (regular) OCR. The OCR outputs of word images in a cluster are then corrected probabilistically by comparing with the OCR outputs of other members of the same cluster. The approach may be applied to improve the accuracy of any OCR run on documents in any language. In particular, we demonstrate it for Telugu, where the use of language models for post-processing is not promising. We show a relative improvement of 28...
Venkat Rasagna, Anand Kumar 0002, C. V. Jawahar, R
Added 21 May 2010
Updated 21 May 2010
Type Conference
Year 2009
Where ICDAR
Authors Venkat Rasagna, Anand Kumar 0002, C. V. Jawahar, Raghavan Manmatha
Comments (0)