Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

CVPR

2010

IEEE

2010

IEEE

Kernel regression techniques such as Relevance Vector Machine (RVM) regression, Support Vector Regression and Gaussian processes are widely used for solving many computer vision problems such as age, head pose, 3D human pose and lighting estimation. However, the presence of outliers in the training dataset makes the estimates from these regression techniques unreliable. In this paper, we propose robust versions of the RVM regression that can handle outliers in the training dataset. We decompose the noise term in the RVM formulation into a (sparse) outlier noise term and a Gaussian noise term. We then estimate the outlier noise along with the model parameters. We present two approaches for solving this estimation problem: 1) a Bayesian approach, which essentially follows the RVM framework and 2) an optimization approach based on Basis Pursuit Denoising. In the Bayesian approach, the robust RVM problem essentially becomes a bigger RVM problem with the advantage that it can be solved efï...

Related Content

Added |
06 Dec 2010 |

Updated |
06 Dec 2010 |

Type |
Conference |

Year |
2010 |

Where |
CVPR |

Authors |
Kaushik Mitra, Ashok Veeraraghavan, Rama Chellappa |

Comments (0)