Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

PARLE

1994

1994

Sparse matrix-vector multiplication forms the heart of iterative linear solvers used widely in scientific computations (e.g., finite element methods). In such solvers, the matrix-vector product is computed repeatedly, often thousands of times, with updated values of the vector until convergence is achieved. In an SIMD architecture, each processor has to fetch the updated off-processor vector elements while computing its share of the product. In this paper, we report on run-time optimization of array distribution and offprocessor data fetching to reduce both the communication and computation time. The optimization is applied to a sparse matrix stored in a compressed sparse row-wise format. Actual runs on test matrices produced up to a 35 percent relative improvement over a block distribution with a naive multiplication algorithm while simulations over a wider range of processors indicate that up to a 60 percent improvement may be possible in some cases.

Added |
27 Aug 2010 |

Updated |
27 Aug 2010 |

Type |
Conference |

Year |
1994 |

Where |
PARLE |

Authors |
Louis H. Ziantz, Can C. Özturan, Boleslaw K. Szymanski |

Comments (0)