Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

AAAI

2006

2006

Reinforcement learning problems are commonly tackled with temporal difference methods, which attempt to estimate the agent's optimal value function. In most real-world problems, learning this value function requires a function approximator, which maps state-action pairs to values via a concise, parameterized function. In practice, the success of function approximators depends on the ability of the human designer to select an appropriate representation for the value function. A recently developed approach called evolutionary function approximation uses evolutionary computation to automate the search for effective representations. While this approach can substantially improve the performance of TD methods, it requires many sample episodes to do so. We present an enhancement to evolutionary function approximation that makes it much more sample-efficient by exploiting the off-policy nature of certain TD methods. Empirical results in a server job scheduling domain demonstrate that the...

Related Content

Added |
30 Oct 2010 |

Updated |
30 Oct 2010 |

Type |
Conference |

Year |
2006 |

Where |
AAAI |

Authors |
Shimon Whiteson, Peter Stone |

Comments (0)