Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

ISSAC

1997

Springer

1997

Springer

Resultants characterize the existence of roots of systems of multivariate nonlinear polynomial equations, while their matrices reduce the computation of all common zeros to a problem in linear algebra. Sparse elimination theory has introduced the sparse resultant, which takes into account the sparse structure of the polynomials. The construction of sparse resultant, or Newton, matrices is a critical step in the computation of the resultant and the solution of the system. We exploit the matrix structure and decrease the time complexity of constructing such matrices to roughly quadratic in the matrix dimension, whereas the previous methods had cubic complexity. The space complexity is also decreased by one order of magnitude. These results imply similar improvements in the complexity of computing the resultant itself and of solving zero-dimensional systems. We apply some novel techniques for determining the rank of rectangular matrices by an exact or numerical computation. Finally, we i...

Related Content

Added |
08 Aug 2010 |

Updated |
08 Aug 2010 |

Type |
Conference |

Year |
1997 |

Where |
ISSAC |

Authors |
Ioannis Z. Emiris, Victor Y. Pan |

Comments (0)