This paper proposes a unified framework for zero anaphora resolution, which can be divided into three sub-tasks: zero anaphor detection, anaphoricity determination and antecedent identification. In particular, all the three sub-tasks are addressed using tree kernel-based methods with appropriate syntactic parse tree structures. Experimental results on a Chinese zero anaphora corpus show that the proposed tree kernel-based methods significantly outperform the feature-based ones. This indicates the critical role of the structural information in zero anaphora resolution and the necessity of tree kernel-based methods in modeling such structural information. To our best knowledge, this is the first systematic work dealing with all the three sub-tasks in Chinese zero anaphora resolution via a unified framework. Moreover, we release a Chinese zero anaphora corpus of 100 documents, which adds a layer of annotation to the manually-parsed sentences in the Chinese Treebank (CTB) 6.0.