We describe a novel framework developed for transfer learning within reinforcement learning (RL) problems. Then we exhibit how this framework can be extended to intelligent tutorin...
Kimberly Ferguson, Beverly Park Woolf, Sridhar Mah...
A method is presented for the analysis of dynamic positron emission tomography (PET) data using sparse Bayesian learning. Parameters are estimated in a compartmental framework usin...
Jyh-Ying Peng, John A. D. Aston, R. N. Gunn, Cheng...
— Metaheuristics such as Estimation of Distribution Algorithms and the Cross-Entropy method use probabilistic modelling and inference to generate candidate solutions in optimizat...
Marcus Gallagher, Ian Wood, Jonathan M. Keith, Geo...
We provide a general framework for learning precise, compact, and fast representations of the Bayesian predictive distribution for a model. This framework is based on minimizing t...
In this paper we use a variational Bayesian framework for color image segmentation. Each image is represented in the L*u*v color coordinate system before being segmented by the va...