We study the problem of learning an optimal Bayesian network in a constrained search space; skeletons are compelled to be subgraphs of a given undirected graph called the super-st...
Kaname Kojima, Eric Perrier, Seiya Imoto, Satoru M...
Metric learning is a fundamental problem in computer vision. Different features and algorithms may tackle a problem from different angles, and thus often provide complementary inf...
Bo Wang, Jiayan Jiang, Wei Wang 0028, Zhi-Hua Zhou...
When correct priors are known, Bayesian algorithms give optimal decisions, and accurate confidence values for predictions can be obtained. If the prior is incorrect however, these...
Thomas Melluish, Craig Saunders, Ilia Nouretdinov,...
Ranking is a key problem in many information retrieval (IR) applications, such as document retrieval and collaborative filtering. In this paper, we address the issue of learning ...
Abstract— Making inferences and choosing appropriate responses based on incomplete, uncertainty and noisy data is challenging in financial settings particularly in bankruptcy de...