Markovian processes have long been used to model stochastic environments. Reinforcement learning has emerged as a framework to solve sequential planning and decision-making proble...
Uncertainty is omnipresent when we perceive or interact with our environment, and the Bayesian framework provides computational methods for dealing with it. Mathematical models fo...
Bernhard Nessler, Michael Pfeiffer, Wolfgang Maass
The goal of transfer learning is to use the knowledge acquired in a set of source tasks to improve performance in a related but previously unseen target task. In this paper, we pr...
Manu Sharma, Michael P. Holmes, Juan Carlos Santam...
— This paper describes a general approach for the unsupervised learning of behaviors in a behavior-based robot. The key idea is to formalize a behavior produced by a Motor Map dr...
Paolo Arena, Luigi Fortuna, Mattia Frasca, Luca Pa...
When envisaging new digital instruments, designers do not have to limit themselves to their sonic capabilities (which can be absolutely any), not even to their algorithmic power; ...