Bayesian networks with mixtures of truncated exponentials (MTEs) support efficient inference algorithms and provide a flexible way of modeling hybrid domains (domains containing ...
Helge Langseth, Thomas D. Nielsen, Rafael Rum&iacu...
We propose a framework MIC (Multiple Inclusion Criterion) for learning sparse models based on the information theoretic Minimum Description Length (MDL) principle. MIC provides an...
Paramveer S. Dhillon, Dean P. Foster, Lyle H. Unga...
Architectural patterns are a fundamental aspect of the architecting process and subsequently the architectural documentation. Unfortunately, there is only poor support for modelin...
The problem of choosing a good parameter setting for a better generalization performance in a learning task is the so-called model selection. A nested uniform design (UD) methodol...
Chien-Ming Huang, Yuh-Jye Lee, Dennis K. J. Lin, S...
Statistical dependencies among wavelet coefficients are commonly represented by graphical models such as hidden Markov trees (HMTs). However, in linear inverse problems such as d...
Nikhil S. Rao, Robert D. Nowak, Stephen J. Wright,...