The problem of assessing the significance of data mining results on high-dimensional 0?1 data sets has been studied extensively in the literature. For problems such as mining freq...
Aristides Gionis, Heikki Mannila, Panayiotis Tsapa...
Background: Predicting protein complexes from experimental data remains a challenge due to limited resolution and stochastic errors of high-throughput methods. Current algorithms ...
Wasinee Rungsarityotin, Roland Krause, Arno Sch&ou...
Background: Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limit...
Bram Slabbinck, Willem Waegeman, Peter Dawyndt, Pa...
—This paper proposes and uses multivariate methods as a tool to evaluate performances of the hardware of microcomputers using their performance data, speed and price. The evaluat...
We present a simple, easily implemented spectral learning algorithm which applies equally whether we have no supervisory information, pairwise link constraints, or labeled example...
Sepandar D. Kamvar, Dan Klein, Christopher D. Mann...