Using a combination of machine learning probabilistic tools, we have shown that some chemistry students fail to develop productive problem solving strategies through practice alon...
Ron Stevens, Amy Soller, Alessandra Giordani, Luca...
Knowledge discovery in databases has become an increasingly important research topic with the advent of wide area network computing. One of the crucial problems we study in this p...
We propose an importance weighting framework for actively labeling samples. This technique yields practical yet sound active learning algorithms for general loss functions. Experi...
We introduce a novel machine learning framework based on recursive autoencoders for sentence-level prediction of sentiment label distributions. Our method learns vector space repr...
Richard Socher, Jeffrey Pennington, Eric H. Huang,...
We present a framework for efficient, accurate approximate Bayesian inference in generalized linear models (GLMs), based on the expectation propagation (EP) technique. The paramete...
Matthias Seeger, Sebastian Gerwinn, Matthias Bethg...