Most existing subspace analysis-based tracking algorithms utilize a flattened vector to represent a target, resulting in a high dimensional data learning problem. Recently, subspa...
Xi Li, Weiming Hu, Zhongfei Zhang, Xiaoqin Zhang, ...
Multi-Agent Reinforcement Learning (MARL) algorithms suffer from slow convergence and even divergence, especially in large-scale systems. In this work, we develop a supervision fr...
Chongjie Zhang, Sherief Abdallah, Victor R. Lesser
Most real-world data is heterogeneous and richly interconnected. Examples include the Web, hypertext, bibliometric data and social networks. In contrast, most statistical learning...
Lise Getoor, Nir Friedman, Daphne Koller, Benjamin...
This paper introduces AORTA, a software architecture that provides object-level coordination and shared workspace awareness support to synchronous and distributed collaborative app...
Without shared understanding, hardly any group learning takes place. Though much has been written about the essence of shared understanding, less is known about how to assess the ...