In complex distributed applications, a problem is often decomposed into a set of subproblems that are distributed to multiple agents. We formulate this class of problems with a tw...
Causal analysis of continuous-valued variables typically uses either autoregressive models or linear Gaussian Bayesian networks with instantaneous effects. Estimation of Gaussian ...
Naive Bayesian classifiers work well in data sets with independent attributes. However, they perform poorly when the attributes are dependent or when there are one or more irrelev...
Miguel A. Palacios-Alonso, Carlos A. Brizuela, Lui...
We propose Laplace max-margin Markov networks (LapM3 N), and a general class of Bayesian M3 N (BM3 N) of which the LapM3 N is a special case with sparse structural bias, for robus...
Background: Biological networks offer us a new way to investigate the interactions among different components and address the biological system as a whole. In this paper, a revers...
Dong-Chul Kim, Xiaoyu Wang, Chin-Rang Yang, Jean G...