Protein fold recognition is a key step towards inferring the tertiary structures from amino-acid sequences. Complex folds such as those consisting of interacting structural repeat...
Learning graphical models with hidden variables can offer semantic insights to complex data and lead to salient structured predictors without relying on expensive, sometime unatta...
Data Mining with Bayesian Network learning has two important characteristics: under broad conditions learned edges between variables correspond to causal influences, and second, f...
Ioannis Tsamardinos, Constantin F. Aliferis, Alexa...
It has been one of the great challenges of neuro-symbolic integration to represent recursive logic programs using neural networks of finite size. In this paper, we propose to imple...
Ekaterina Komendantskaya, Krysia Broda, Artur S. d...
Abstract. Recently, there has been an increasing interest in directed probabilistic logical models and a variety of languages for describing such models has been proposed. Although...
Jan Ramon, Tom Croonenborghs, Daan Fierens, Hendri...