We propose a new active learning algorithm to address the problem of selecting a limited subset of utterances for transcribing from a large amount of unlabeled utterances so that ...
Balakrishnan Varadarajan, Dong Yu, Li Deng, Alex A...
In this paper, we propose a novel method to reduce the magnitude of 4D CT artifacts by stitching two images with a data-driven regularization constrain, which helps preserve the l...
Dongfeng Han, John Bayouth, Qi Song, sudershan Bha...
Distributed estimation of an unknown signal is a common task in sensor networks. The scenario usually envisioned consists of several nodes, each making an observation correlated wi...
Real-world, multiple-typed objects are often interconnected, forming heterogeneous information networks. A major challenge for link-based clustering in such networks is its potent...
We propose a unified global entropy reduction maximization (GERM) framework for active learning and semi-supervised learning for speech recognition. Active learning aims to select...
Dong Yu, Balakrishnan Varadarajan, Li Deng, Alex A...