Sciweavers

2395 search results - page 103 / 479
» A selective sampling approach to active feature selection
Sort
View
JMLR
2010
126views more  JMLR 2010»
14 years 4 months ago
Ultra-high Dimensional Multiple Output Learning With Simultaneous Orthogonal Matching Pursuit: Screening Approach
We propose a novel application of the Simultaneous Orthogonal Matching Pursuit (SOMP) procedure to perform variable selection in ultra-high dimensional multiple output regression ...
Mladen Kolar, Eric P. Xing
ICML
2003
IEEE
15 years 10 months ago
Incorporating Diversity in Active Learning with Support Vector Machines
In many real world applications, active selection of training examples can significantly reduce the number of labelled training examples to learn a classification function. Differ...
Klaus Brinker
ILP
2004
Springer
15 years 3 months ago
First Order Random Forests with Complex Aggregates
Random forest induction is a bagging method that randomly samples the feature set at each node in a decision tree. In propositional learning, the method has been shown to work well...
Celine Vens, Anneleen Van Assche, Hendrik Blockeel...
ACL
2009
14 years 7 months ago
Semi-Supervised Active Learning for Sequence Labeling
While Active Learning (AL) has already been shown to markedly reduce the annotation efforts for many sequence labeling tasks compared to random selection, AL remains unconcerned a...
Katrin Tomanek, Udo Hahn
BMCBI
2006
200views more  BMCBI 2006»
14 years 10 months ago
Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data
Background: Numerous feature selection methods have been applied to the identification of differentially expressed genes in microarray data. These include simple fold change, clas...
Ian B. Jeffery, Desmond G. Higgins, Aedín C...