Sciweavers

99 search results - page 9 / 20
» Action Selection in Bayesian Reinforcement Learning
Sort
View
ICML
2010
IEEE
14 years 7 months ago
Constructing States for Reinforcement Learning
POMDPs are the models of choice for reinforcement learning (RL) tasks where the environment cannot be observed directly. In many applications we need to learn the POMDP structure ...
M. M. Hassan Mahmud
77
Voted
IAT
2003
IEEE
15 years 2 months ago
Integrating Reinforcement Learning, Bidding and Genetic Algorithms
This paper presents a multi-agent reinforcement learning bidding approach (MARLBS) for performing multi-agent reinforcement learning. MARLBS integrates reinforcement learning, bid...
Dehu Qi, Ron Sun
FLAIRS
2008
14 years 11 months ago
Learning Continuous Action Models in a Real-Time Strategy Environment
Although several researchers have integrated methods for reinforcement learning (RL) with case-based reasoning (CBR) to model continuous action spaces, existing integrations typic...
Matthew Molineaux, David W. Aha, Philip Moore
IWANN
1999
Springer
15 years 1 months ago
Using Temporal Neighborhoods to Adapt Function Approximators in Reinforcement Learning
To avoid the curse of dimensionality, function approximators are used in reinforcement learning to learn value functions for individual states. In order to make better use of comp...
R. Matthew Kretchmar, Charles W. Anderson
EUROCAST
2007
Springer
182views Hardware» more  EUROCAST 2007»
15 years 3 months ago
A k-NN Based Perception Scheme for Reinforcement Learning
Abstract a paradigm of modern Machine Learning (ML) which uses rewards and punishments to guide the learning process. One of the central ideas of RL is learning by “direct-online...
José Antonio Martin H., Javier de Lope Asia...