Sciweavers

277 search results - page 10 / 56
» Active Learning for Structure in Bayesian Networks
Sort
View
JMLR
2010
140views more  JMLR 2010»
14 years 6 months ago
Learning Non-Stationary Dynamic Bayesian Networks
Learning dynamic Bayesian network structures provides a principled mechanism for identifying conditional dependencies in time-series data. An important assumption of traditional D...
Joshua W. Robinson, Alexander J. Hartemink
ECML
2007
Springer
15 years 5 months ago
Learning Directed Probabilistic Logical Models: Ordering-Search Versus Structure-Search
We discuss how to learn non-recursive directed probabilistic logical models from relational data. This problem has been tackled before by upgrading the structure-search algorithm i...
Daan Fierens, Jan Ramon, Maurice Bruynooghe, Hendr...
UAI
2003
15 years 1 months ago
Learning Continuous Time Bayesian Networks
Continuous time Bayesian networks (CTBN) describe structured stochastic processes with finitely many states that evolve over continuous time. A CTBN is a directed (possibly cycli...
Uri Nodelman, Christian R. Shelton, Daphne Koller
ICMCS
2008
IEEE
207views Multimedia» more  ICMCS 2008»
15 years 6 months ago
Structure learning in a Bayesian network-based video indexing framework
Several stochastic models provide an effective framework to identify the temporal structure of audiovisual data. Most of them need as input a first video structure, i.e. connecti...
Siwar Baghdadi, Guillaume Gravier, Claire-Hé...