Sciweavers

85 search results - page 7 / 17
» Aggregating Learned Probabilistic Beliefs
Sort
View
ICML
2006
IEEE
15 years 10 months ago
Probabilistic inference for solving discrete and continuous state Markov Decision Processes
Inference in Markov Decision Processes has recently received interest as a means to infer goals of an observed action, policy recognition, and also as a tool to compute policies. ...
Marc Toussaint, Amos J. Storkey
CORR
2012
Springer
170views Education» more  CORR 2012»
13 years 5 months ago
What Cannot be Learned with Bethe Approximations
We address the problem of learning the parameters in graphical models when inference is intractable. A common strategy in this case is to replace the partition function with its B...
Uri Heinemann, Amir Globerson
CORR
2010
Springer
193views Education» more  CORR 2010»
14 years 8 months ago
A Probabilistic Approach for Learning Folksonomies from Structured Data
Learning structured representations has emerged as an important problem in many domains, including document and Web data mining, bioinformatics, and image analysis. One approach t...
Anon Plangprasopchok, Kristina Lerman, Lise Getoor
ICML
2005
IEEE
15 years 10 months ago
Naive Bayes models for probability estimation
Naive Bayes models have been widely used for clustering and classification. However, they are seldom used for general probabilistic learning and inference (i.e., for estimating an...
Daniel Lowd, Pedro Domingos
UAI
1998
14 years 11 months ago
The Bayesian Structural EM Algorithm
In recent years there has been a flurry of works on learning Bayesian networks from data. One of the hard problems in this area is how to effectively learn the structure of a beli...
Nir Friedman