— This paper presents a new reinforcement learning algorithm for accelerating acquisition of new skills by real mobile robots, without requiring simulation. It speeds up Q-learni...
In this paper, we investigate the use of hierarchical reinforcement learning (HRL) to speed up the acquisition of cooperative multi-agent tasks. We introduce a hierarchical multi-a...
Rajbala Makar, Sridhar Mahadevan, Mohammad Ghavamz...
Recent advancements in model-based reinforcement learning have shown that the dynamics of many structured domains (e.g. DBNs) can be learned with tractable sample complexity, desp...
Thomas J. Walsh, Sergiu Goschin, Michael L. Littma...
With the goal to generate more scalable algorithms with higher efficiency and fewer open parameters, reinforcement learning (RL) has recently moved towards combining classical tec...
We address the problem of autonomously learning controllers for visioncapable mobile robots. We extend McCallum's (1995) Nearest-Sequence Memory algorithm to allow for genera...
Viktor Zhumatiy, Faustino J. Gomez, Marcus Hutter,...