Sciweavers

1325 search results - page 46 / 265
» Algorithm Selection using Reinforcement Learning
Sort
View
ILP
2003
Springer
15 years 7 months ago
Graph Kernels and Gaussian Processes for Relational Reinforcement Learning
RRL is a relational reinforcement learning system based on Q-learning in relational state-action spaces. It aims to enable agents to learn how to act in an environment that has no ...
Thomas Gärtner, Kurt Driessens, Jan Ramon
ICML
2000
IEEE
16 years 3 months ago
Reinforcement Learning in POMDP's via Direct Gradient Ascent
This paper discusses theoretical and experimental aspects of gradient-based approaches to the direct optimization of policy performance in controlled ??? ?s. We introduce ??? ?, a...
Jonathan Baxter, Peter L. Bartlett
ATAL
2008
Springer
15 years 4 months ago
Sequential decision making in repeated coalition formation under uncertainty
The problem of coalition formation when agents are uncertain about the types or capabilities of their potential partners is a critical one. In [3] a Bayesian reinforcement learnin...
Georgios Chalkiadakis, Craig Boutilier
107
Voted
AAAI
2008
15 years 4 months ago
Adaptive Importance Sampling with Automatic Model Selection in Value Function Approximation
Off-policy reinforcement learning is aimed at efficiently reusing data samples gathered in the past, which is an essential problem for physically grounded AI as experiments are us...
Hirotaka Hachiya, Takayuki Akiyama, Masashi Sugiya...
CORR
2010
Springer
105views Education» more  CORR 2010»
15 years 28 days ago
Optimism in Reinforcement Learning Based on Kullback-Leibler Divergence
We consider model-based reinforcement learning in finite Markov Decision Processes (MDPs), focussing on so-called optimistic strategies. Optimism is usually implemented by carryin...
Sarah Filippi, Olivier Cappé, Aurelien Gari...