Sciweavers

210 search results - page 10 / 42
» An analysis of reinforcement learning with function approxim...
Sort
View
ECML
2004
Springer
15 years 5 months ago
Convergence and Divergence in Standard and Averaging Reinforcement Learning
Although tabular reinforcement learning (RL) methods have been proved to converge to an optimal policy, the combination of particular conventional reinforcement learning techniques...
Marco Wiering
GECCO
2004
Springer
122views Optimization» more  GECCO 2004»
15 years 5 months ago
Gradient-Based Learning Updates Improve XCS Performance in Multistep Problems
This paper introduces a gradient-based reward prediction update mechanism to the XCS classifier system as applied in neuralnetwork type learning and function approximation mechani...
Martin V. Butz, David E. Goldberg, Pier Luca Lanzi
ICRA
2009
IEEE
259views Robotics» more  ICRA 2009»
15 years 6 months ago
Constructing action set from basis functions for reinforcement learning of robot control
Abstract— Continuous action sets are used in many reinforcement learning (RL) applications in robot control since the control input is continuous. However, discrete action sets a...
Akihiko Yamaguchi, Jun Takamatsu, Tsukasa Ogasawar...
PKDD
2009
Springer
144views Data Mining» more  PKDD 2009»
15 years 6 months ago
Compositional Models for Reinforcement Learning
Abstract. Innovations such as optimistic exploration, function approximation, and hierarchical decomposition have helped scale reinforcement learning to more complex environments, ...
Nicholas K. Jong, Peter Stone
AAAI
2008
15 years 2 months ago
Adaptive Importance Sampling with Automatic Model Selection in Value Function Approximation
Off-policy reinforcement learning is aimed at efficiently reusing data samples gathered in the past, which is an essential problem for physically grounded AI as experiments are us...
Hirotaka Hachiya, Takayuki Akiyama, Masashi Sugiya...