Sciweavers

210 search results - page 14 / 42
» An analysis of reinforcement learning with function approxim...
Sort
View
108
Voted
NIPS
2008
15 years 1 months ago
Regularized Policy Iteration
In this paper we consider approximate policy-iteration-based reinforcement learning algorithms. In order to implement a flexible function approximation scheme we propose the use o...
Amir Massoud Farahmand, Mohammad Ghavamzadeh, Csab...
105
Voted
ICCBR
2007
Springer
15 years 5 months ago
An Analysis of Case-Based Value Function Approximation by Approximating State Transition Graphs
We identify two fundamental points of utilizing CBR for an adaptive agent that tries to learn on the basis of trial and error without a model of its environment. The first link co...
Thomas Gabel, Martin Riedmiller
NIPS
1996
15 years 1 months ago
Multidimensional Triangulation and Interpolation for Reinforcement Learning
Dynamic Programming, Q-learning and other discrete Markov Decision Process solvers can be applied to continuous d-dimensional state-spaces by quantizing the state space into an arr...
Scott Davies
ECAI
2008
Springer
15 years 1 months ago
Exploiting locality of interactions using a policy-gradient approach in multiagent learning
In this paper, we propose a policy gradient reinforcement learning algorithm to address transition-independent Dec-POMDPs. This approach aims at implicitly exploiting the locality...
Francisco S. Melo
94
Voted
PKDD
2009
Springer
152views Data Mining» more  PKDD 2009»
15 years 6 months ago
Feature Selection for Value Function Approximation Using Bayesian Model Selection
Abstract. Feature selection in reinforcement learning (RL), i.e. choosing basis functions such that useful approximations of the unkown value function can be obtained, is one of th...
Tobias Jung, Peter Stone