Sciweavers

210 search results - page 16 / 42
» An analysis of reinforcement learning with function approxim...
Sort
View
NIPS
2001
15 years 1 months ago
Variance Reduction Techniques for Gradient Estimates in Reinforcement Learning
Policy gradient methods for reinforcement learning avoid some of the undesirable properties of the value function approaches, such as policy degradation (Baxter and Bartlett, 2001...
Evan Greensmith, Peter L. Bartlett, Jonathan Baxte...
CDC
2010
IEEE
160views Control Systems» more  CDC 2010»
14 years 6 months ago
Adaptive bases for Q-learning
Abstract-- We consider reinforcement learning, and in particular, the Q-learning algorithm in large state and action spaces. In order to cope with the size of the spaces, a functio...
Dotan Di Castro, Shie Mannor
ICML
2007
IEEE
16 years 15 days ago
Constructing basis functions from directed graphs for value function approximation
Basis functions derived from an undirected graph connecting nearby samples from a Markov decision process (MDP) have proven useful for approximating value functions. The success o...
Jeffrey Johns, Sridhar Mahadevan
UAI
2008
15 years 1 months ago
Dyna-Style Planning with Linear Function Approximation and Prioritized Sweeping
We consider the problem of efficiently learning optimal control policies and value functions over large state spaces in an online setting in which estimates must be available afte...
Richard S. Sutton, Csaba Szepesvári, Alborz...
ATAL
2009
Springer
15 years 6 months ago
SarsaLandmark: an algorithm for learning in POMDPs with landmarks
Reinforcement learning algorithms that use eligibility traces, such as Sarsa(λ), have been empirically shown to be effective in learning good estimated-state-based policies in pa...
Michael R. James, Satinder P. Singh