Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statisti...
Julien Mairal, Francis Bach, Jean Ponce, Guillermo...
Blind separation of sources from nonlinear mixtures is a challenging and often ill-posed problem. We present three methods for solving this problem: an improved nonlinear factor a...
Antti Honkela, Harri Valpola, Alexander Ilin, Juha...
We propose a nonparametric extension to the factor analysis problem using a beta process prior. This beta process factor analysis (BPFA) model allows for a dataset to be decompose...
We present a Bayesian search algorithm for learning the structure of latent variable models of continuous variables. We stress the importance of applying search operators designed...
Background: One of the challenges of bioinformatics remains the recognition of short signal sequences in genomic DNA such as donor or acceptor splice sites, splicing enhancers or ...
Jens Keilwagen, Jan Grau, Stefan Posch, Ivo Grosse