We develop a probabilistic criterion for belief expansion that is sensitive to the degree of contextual fit of the new information to our belief set as well as to the reliability...
In many real-world domains, undirected graphical models such as Markov random fields provide a more natural representation of the dependency structure than directed graphical mode...
Sushmita Roy, Terran Lane, Margaret Werner-Washbur...
Cognitive networking deals with applying cognition to the entire network protocol stack for achieving stack-wide as well as network-wide performance goals, unlike cognitive radios ...
Giorgio Quer, Hemanth Meenakshisundaram, Tamma Bhe...
This paper provides algorithms that use an information-theoretic analysis to learn Bayesian network structures from data. Based on our three-phase learning framework, we develop e...
Jie Cheng, Russell Greiner, Jonathan Kelly, David ...
Abstract. Mobile devices get to handle much information thanks to the convergence of diverse functionalities. Their environment has great potential of supporting customized service...