Developing models and methods to manage data vagueness is a current effervescent research field. Some work has been done with supervised problems but unsupervised problems and unce...
In this paper, block diagonal linear discriminant analysis (BDLDA) is improved and applied to gene expression data. BDLDA is a classification tool with embedded feature selection...
Lingyan Sheng, Roger Pique-Regi, Shahab Asgharzade...
Abstract. Feature selection has improved the performance of text clustering. Global feature selection tries to identify a single subset of features which are relevant to all cluste...
Marcelo N. Ribeiro, Manoel J. R. Neto, Ricardo Bas...
An easily implementable mixed-integer algorithm is proposed that generates a nonlinear kernel support vector machine (SVM) classifier with reduced input space features. A single ...
This paper presents an efficient hybrid feature selection model based on Support Vector Machine (SVM) and Genetic Algorithm (GA) for large healthcare databases. Even though SVM an...
Rick Chow, Wei Zhong, Michael Blackmon, Richard St...