We propose a family of clustering algorithms based on the maximization of dependence between the input variables and their cluster labels, as expressed by the Hilbert-Schmidt Inde...
Le Song, Alexander J. Smola, Arthur Gretton, Karst...
In this paper we propose the Possibilistic C-Means in Feature Space and the One-Cluster Possibilistic C-Means in Feature Space algorithms which are kernel methods for clustering in...
Maurizio Filippone, Francesco Masulli, Stefano Rov...
In this paper we consider approximate policy-iteration-based reinforcement learning algorithms. In order to implement a flexible function approximation scheme we propose the use o...
Amir Massoud Farahmand, Mohammad Ghavamzadeh, Csab...
Many machine learning algorithms can be formulated in the framework of statistical independence such as the Hilbert Schmidt Independence Criterion. In this paper, we extend this c...
Xinhua Zhang, Le Song, Arthur Gretton, Alex J. Smo...
—We propose an efficient and robust solution for image set classification. A joint representation of an image set is proposed which includes the image samples of the set and thei...