We propose a class of Bayesian networks appropriate for structured prediction problems where the Bayesian network's model structure is a function of the predicted output stru...
Abstract. We investigate the extent to which eye movements in natural dynamic scenes can be predicted with a simple model of bottom-up saliency, which learns on different visual re...
Eleonora Vig, Michael Dorr, Thomas Martinetz, Erha...
We contribute a method for approximating users’ interruptibility costs to use for experience sampling and validate the method in an application that learns when to automatically ...
Stephanie Rosenthal, Anind K. Dey, Manuela M. Velo...
We present two novel methods to automatically learn spatio-temporal dependencies of moving agents in complex dynamic scenes. They allow to discover temporal rules, such as the rig...
Daniel Kuettel, Michael Breitenstein, Luc Van Gool...
Reinforcement learning is a paradigm under which an agent seeks to improve its policy by making learning updates based on the experiences it gathers through interaction with the en...