Sciweavers

85 search results - page 3 / 17
» Approximate Policy Iteration with a Policy Language Bias
Sort
View
92
Voted
ICRA
2009
IEEE
143views Robotics» more  ICRA 2009»
15 years 6 months ago
Least absolute policy iteration for robust value function approximation
Abstract— Least-squares policy iteration is a useful reinforcement learning method in robotics due to its computational efficiency. However, it tends to be sensitive to outliers...
Masashi Sugiyama, Hirotaka Hachiya, Hisashi Kashim...
105
Voted

Publication
222views
15 years 8 months ago
Algorithms and Bounds for Rollout Sampling Approximate Policy Iteration
Abstract: Several approximate policy iteration schemes without value functions, which focus on policy representation using classifiers and address policy learning as a supervis...
Christos Dimitrakakis, Michail G. Lagoudakis
90
Voted
ECML
2006
Springer
15 years 3 months ago
Approximate Policy Iteration for Closed-Loop Learning of Visual Tasks
Abstract. Approximate Policy Iteration (API) is a reinforcement learning paradigm that is able to solve high-dimensional, continuous control problems. We propose to exploit API for...
Sébastien Jodogne, Cyril Briquet, Justus H....
NIPS
2008
15 years 1 months ago
Regularized Policy Iteration
In this paper we consider approximate policy-iteration-based reinforcement learning algorithms. In order to implement a flexible function approximation scheme we propose the use o...
Amir Massoud Farahmand, Mohammad Ghavamzadeh, Csab...
ATAL
2008
Springer
15 years 1 months ago
Sigma point policy iteration
In reinforcement learning, least-squares temporal difference methods (e.g., LSTD and LSPI) are effective, data-efficient techniques for policy evaluation and control with linear v...
Michael H. Bowling, Alborz Geramifard, David Winga...