Recently direct optimization of information retrieval (IR) measures becomes a new trend in learning to rank. Several methods have been proposed and the effectiveness of them has ...
Partially observable Markov decision processes (POMDPs) are widely used for planning under uncertainty. In many applications, the huge size of the POMDP state space makes straightf...
Joni Pajarinen, Jaakko Peltonen, Ari Hottinen, Mik...
L1 regularized logistic regression is now a workhorse of machine learning: it is widely used for many classification problems, particularly ones with many features. L1 regularized...
Su-In Lee, Honglak Lee, Pieter Abbeel, Andrew Y. N...
Low-rank matrix decompositions are essential tools in the application of kernel methods to large-scale learning problems. These decompositions have generally been treated as black...
The success of tensor-based subspace learning depends heavily on reducing correlations along the column vectors of the mode-k flattened matrix. In this work, we study the problem ...
Shuicheng Yan, Dong Xu, Stephen Lin, Thomas S. Hua...