Sciweavers

495 search results - page 54 / 99
» Approximation algorithms for budgeted learning problems
Sort
View
ICPR
2006
IEEE
15 years 10 months ago
Control Double Inverted Pendulum by Reinforcement Learning with Double CMAC Network
To accelerate the learning of reinforcement learning, many types of function approximation are used to represent state value. However function approximation reduces the accuracy o...
Siwei Luo, Yu Zheng, Ziang Lv
JMLR
2006
153views more  JMLR 2006»
14 years 9 months ago
Collaborative Multiagent Reinforcement Learning by Payoff Propagation
In this article we describe a set of scalable techniques for learning the behavior of a group of agents in a collaborative multiagent setting. As a basis we use the framework of c...
Jelle R. Kok, Nikos A. Vlassis
NIPS
1994
14 years 11 months ago
Reinforcement Learning with Soft State Aggregation
It is widely accepted that the use of more compact representations than lookup tables is crucial to scaling reinforcement learning (RL) algorithms to real-world problems. Unfortun...
Satinder P. Singh, Tommi Jaakkola, Michael I. Jord...
ML
2007
ACM
106views Machine Learning» more  ML 2007»
14 years 9 months ago
Surrogate maximization/minimization algorithms and extensions
Abstract Surrogate maximization (or minimization) (SM) algorithms are a family of algorithms that can be regarded as a generalization of expectation-maximization (EM) algorithms. A...
Zhihua Zhang, James T. Kwok, Dit-Yan Yeung
ECML
2007
Springer
15 years 1 months ago
Efficient Continuous-Time Reinforcement Learning with Adaptive State Graphs
Abstract. We present a new reinforcement learning approach for deterministic continuous control problems in environments with unknown, arbitrary reward functions. The difficulty of...
Gerhard Neumann, Michael Pfeiffer, Wolfgang Maass