Sciweavers

86 search results - page 12 / 18
» Approximation of Gaussian process regression models after tr...
Sort
View
ICASSP
2011
IEEE
14 years 3 months ago
Robust nonparametric regression by controlling sparsity
Nonparametric methods are widely applicable to statistical learning problems, since they rely on a few modeling assumptions. In this context, the fresh look advocated here permeat...
Gonzalo Mateos, Georgios B. Giannakis
JCNS
2010
104views more  JCNS 2010»
14 years 10 months ago
A new look at state-space models for neural data
State space methods have proven indispensable in neural data analysis. However, common methods for performing inference in state-space models with non-Gaussian observations rely o...
Liam Paninski, Yashar Ahmadian, Daniel Gil Ferreir...
ICML
2005
IEEE
16 years 17 days ago
Combining model-based and instance-based learning for first order regression
T ORDER REGRESSION (EXTENDED ABSTRACT) Kurt Driessensa Saso Dzeroskib a Department of Computer Science, University of Waikato, Hamilton, New Zealand (kurtd@waikato.ac.nz) b Departm...
Kurt Driessens, Saso Dzeroski
TSP
2010
14 years 6 months ago
Distributed sparse linear regression
The Lasso is a popular technique for joint estimation and continuous variable selection, especially well-suited for sparse and possibly under-determined linear regression problems....
Gonzalo Mateos, Juan Andrés Bazerque, Georg...
KDD
2000
ACM
153views Data Mining» more  KDD 2000»
15 years 3 months ago
The generalized Bayesian committee machine
In this paper we introduce the Generalized Bayesian Committee Machine (GBCM) for applications with large data sets. In particular, the GBCM can be used in the context of kernel ba...
Volker Tresp