Sciweavers

129 search results - page 3 / 26
» Automatic Recovery Using Bounded Partially Observable Markov...
Sort
View
ECML
2005
Springer
15 years 6 months ago
Active Learning in Partially Observable Markov Decision Processes
This paper examines the problem of finding an optimal policy for a Partially Observable Markov Decision Process (POMDP) when the model is not known or is only poorly specified. W...
Robin Jaulmes, Joelle Pineau, Doina Precup
AAAI
1996
15 years 1 months ago
Computing Optimal Policies for Partially Observable Decision Processes Using Compact Representations
: Partially-observable Markov decision processes provide a very general model for decision-theoretic planning problems, allowing the trade-offs between various courses of actions t...
Craig Boutilier, David Poole
DSN
2009
IEEE
14 years 10 months ago
RRE: A game-theoretic intrusion Response and Recovery Engine
Preserving the availability and integrity of networked computing systems in the face of fast-spreading intrusions requires advances not only in detection algorithms, but also in a...
Saman A. Zonouz, Himanshu Khurana, William H. Sand...
86
Voted
COLT
2000
Springer
15 years 4 months ago
Estimation and Approximation Bounds for Gradient-Based Reinforcement Learning
We model reinforcement learning as the problem of learning to control a Partially Observable Markov Decision Process (  ¢¡¤£¦¥§  ), and focus on gradient ascent approache...
Peter L. Bartlett, Jonathan Baxter
AAAI
2007
15 years 2 months ago
Purely Epistemic Markov Decision Processes
Planning under uncertainty involves two distinct sources of uncertainty: uncertainty about the effects of actions and uncertainty about the current state of the world. The most wi...
Régis Sabbadin, Jérôme Lang, N...